
Project Report - Battleship
AASMA

Bernardo Faria
MEIC-A
87636

bernardo.faria@tecnico.ulisboa.pt

Ricardo Ferreira
MEIC-A
87701

ricardo.m.s.ferreira@tecnico.ulisboa.p
t

Tiago Neves
MEIC-T
90778

tiago.c.neves@tecnico.ulisboa.pt

ABSTRACT
In this paper, we will analyze the results of an agent-based project
where we explored and studied multiple types of agents
addressing a strategy type guessing game, called Battleship.

CCS Concepts
I.2.11 [Computing methodologies] - Artificial intelligence -
Distributed artificial intelligence - Intelligent agents

Keywords
Agents; Game; Reactive; Learning; Fleet; Parity; Random

1. Project Description
Battleship is a strategy type guessing game where two players are
battling against each other. At the beginning, each player has its
own board and places the five ships, vertically or horizontally, in
it. Players will take turns guessing by calling the coordinates they
want to “shoot”. The objective is to sink the opponent’s ships
before they do.

Our project addresses this problem, building integrated agents that
play on their own, each one with different approaches. The
players can be an agent or a human and the game will allow three
different modes:

● Agent Only. 1-player game where the agent plays alone,
shooting a board created randomly.

● Agent-Agent. 2-player game between two agents.
● Human-Agent. 2-player game between an agent and a

human.

The players will progressively gain access to the opponent's
world's environment as they shoot the enemy board. This
information will be given to the agent through a satellite (sensor)
and therefore the agent will have the information regarding if the
shot hit or not.

As for the agents, there is a Naive Agent, two Reactive Agents
with different approaches, and a Learning Agent.

1.1 Project Motivation
The main factor that led us to create this project comes from the
desire to observe how an Agent develops strategies and how better
they can be when compared to human strategies. With battleship
we can easily code the strategy that a human uses to win a game
and therefore compare it to the strategy that the learning agent
comes up with.

Also we would be able to create different types of agents.This
allows us to have multiple ways to solve the same problem and
therefore evaluate the comparative results, the different
approaches that the agents will address and conclude which type
of agent performs better in this type of games or situations.

1.2 Project End Goal
Our project end goal is to see if the Agents can overcome the
performance of a human player. We will also have an agent that
uses Q-learning, in which we will try to answer if this agent has
better averages than the Naive Agent and the Reactive agents.
More specifically, we will use different metrics to respond to these
answers.

1.3 Game Structure
The game can have two boards, or one if the game is being played
in Agent only mode. Despite this, the board is one main
component of the game and we decide to follow the traditional
game guideline. The board is a 2d grid with size 10x10. This is
where the agents will place the ships and where the players will
shoot to try to hit the enemy ships.

There are 5 ships, for each player, of length 2, 3, 4 and 5, in which
two of them have size 3:

● Carrier (5)
● Battleship (4)
● Cruiser (3)
● Submarine (3)
● Destroyer (2)

Also, each player has a satellite which gives information about the
opponent’s environment and informs the player whether a shot hit
or if the ship sunk.

1.4 Game Rules
Before the game starts, each player has to place his 5 ships on the
board. Players can choose to place the ships manually (the user
can choose the coordinates to place the ships and choose his
orientation) or randomly (the ships are placed randomly). The
ships:

● Cannot be placed diagonally and therefore can only be
placed vertically and horizontally.

● Ships cannot overlap and no part of the ship can be
outside the grid.

After the ships are placed, the game ends when a player destroys
the whole opponent’s fleet. The players will alternate turns,

mailto:bernardo.faria@tecnico.ulisboa.pt
mailto:ricardo.m.s.ferreira@tecnico.ulisboa.pt
mailto:ricardo.m.s.ferreira@tecnico.ulisboa.pt
mailto:tiago.c.neves@tecnico.ulisboa.pt


calling out one shot per turn. Each player will decide a pair x, y
which represent a location on the opponent’s board and the player
is informed whether the shot hits or not.

2. AI Implementation
To address this problem, four agents were built while developing
the project: a Naive Agent, two Reactive Agents with different
approaches, and a Learning Agent. The agents will have a satellite
to inform them about the opponent's environment. Initially the
environment is fully unknown and the agents will gain access to
the enemy’s world as it shoots.

2.1 Naive Agent
Starting with the Naive Agent, this is the simplest agent of the
four. It follows a very straightforward policy: at each round, the
agent chooses a random coordinate of the board. The agent
accesses the satellite to see which coordinates he already shooted
and chooses only coordinates where we didn’t shoot.

2.2 Reactive Agents
Our program has two different Reactive Agents approaches. Both
policies of these two agents are more complex than the Naive
Agent but they share common properties.

For both Reactive Agents, the policy works this way: the first shot
of the agent is always random, by calculating an arbitrary
coordinate of the board to shoot. Then, for the following shots,
one of these situations happens:

● If the shot hits a ship, the agent enters exploration mode
by exploring the surrounding area, namely the board
cells up, down, left and right of the current location; the
process repeats if one of these new coordinates hits a
ship and if the cell has not yet been shooted at. All these
coordinates to explore are saved by the agent.

● If the shot does not hit a ship, the agent looks for
coordinates that might be able to explore. If so, pick the
coordinates from the list; if not, then the agent proceeds
the game by calculating a new coordinate randomly.

The policy of this agent follows the same principle that all of us
usually use when playing this game. If we hit a ship, the rest of it
might be in the surrounding area of the board, hence the
exploration of the cell’s neighborhood in order to find it. Although
it also uses a random approach, this is only used when the agent
has no more options to explore. However, the agent doesn’t know
when a ship is destroyed and therefore cannot calculate possible
spaces where the ship can or cannot be. For example, if the agent
knew that he already had found the ship of size 2, that is the
smallest one, he could infer that two adjacent cells where the
neighbor cells are not free cannot have any ship.

The only difference between these two agents is the space to shoot
when not in exploration mode. The agent we call Reactive
Random, can shoot in all of the cells. The other agent, called
Reactive Parity, can only choose random cells that correspond to
even cells. Even cells correspond to the ones that the sum of x and
y is an even number. This slight improvement is due to the fact
that the minimum length of a ship is two units long so it’s not
necessary to randomly search every location on the board since
there is no ship of size one. Every ship, even the one with size

two, has to straddle two adjacent cells as we can see in the next
image.

Regarding the difference we already mentioned, that the agent
doesn’t know when a ship is destroyed and therefore cannot
calculate possible spaces where the ship can or cannot be, we
could also implement an improvement based on changing the
parity. For example, once we sink the ship of size two we can
change the parity restriction to a larger spacing.

2.3 Learning Agent

The learning agent works with board environment which are the
states (10*10) and can choose the point to shoot where it will have
to analyse a direction if it is on the side of the hit point. The agent
takes the action where can study states to see which is the best
direction around the hit point. For example, he knows that the
closer the hit shots are, the more likely to destroy a ship and
therefore get a higher reward. But also knows that around the
point where the ship has already been sunk, his probability is null
as by default.

In the Q Learning table, the values start always at zero and each
step the agent takes an action, the table is updated with Q
Learning equation that can increase or decrease depending on the
shot result. The rewards have a huge impact on the table. Can be
positive or negative. The agent receives a reward of 1 if he makes
the shot on ship and can receive even more if his direction is
correct, which is one more. If he misses the shot, receives one
less. The learning agent can train several times to get the Q
Learning table updated and during the battle he can make better
and better decisions. It's natural for the first steps to fail a lot like
the Reactive Agent with random because for first steps he usually
uses random to make the decision.



3. Road Blocks
The first implementation of the Reactive Agent that follows the
pattern led us to a problem, which we will explain briefly. This
initial implementation followed the same cells space as the
Reactive Parity agent, but with a small difference: the agent
strictly followed the pattern with an approach top-down,
right-to-left.. Its first shot was not a random choice from the
pattern cells, but the actual first cell in the pattern (in our case, the
cell (0,0)). This strict process led us to serious problems, like the
agent trying to read a cell outside the game board, or even missing
a large number of consecutive shots. For instance, if all five
opponents' ships were placed on the bottom part of the board (to
give an example, from the 7th row until the last one), the agent
would fire at least 25 miss shots, since the agent strictly follows
the pattern top-down. As we soon discovered this problem, we
noticed that this approach was not the best one. The solution we
planned for this was for the agent, in its first shot, to choose a
random cell from the space environment. With this, the agent
won’t always start on the first cell. The example above might
happen, but it is highly unlikely to, since the agent needed to
choose the very first cell in the game, and at the same time, all the
ships should be on the bottom part of the board. Our solution
reduces this probability, enhancing the agent’s efficiency.

4. Experimental Analyses
In this section we will address the testing results we obtained
during the analysis. At the end of the section we’ll discuss the
overall project result.
In order to evaluate the performance of our agents, we decided to
guide by three metrics: number of shots per game, number of max
consecutive hits per game and percentage of games won by each
agent against other agents.

4.1 Metrics
Starting with the first metric, number of shots per game, we think
this metric is crucial and the best to measure the overall
performance of the agent. This metric will count the total shots,
hit or miss, until all the fleet is sunk. We ran multiple simulations
of games for each agent in order to have consistent results and
then we plotted the respective graphics. Every run is a new game
and therefore the fleet's location is different. The x-axis will
represent the number of shots and the y-axis shows the number of
games that were ended x number of shots.

The graph above shows that the Naive agent needs more than 90
shots to end the game in the major percentage of the games.

The graph above shows the cumulative probability of completing
the game with n shots. We can observe that the agent needs
approximately 96 shots to complete 50% of the games and 95% of
the games will take more than 84 shots.

Proceeding with the Reactive Agents, we observed a remarkable
improvement when compared to the Naïve Agent. When
compared to each other, they are similar but we can observe that
the one with the parity random approach has a better performance
than the one who considers all the cells.



As we can see in the figure above, they both can complete games
below 35 shots which is a huge improvement as we already said.
However, looking at the graph, we can see that the Reactive Parity
agent gives improvement over the entire range. The agent with the
parity approach has more area under the line between the values
45 and 75 shots which is a consequence of the fact that he never
needs more than 80 shots to complete the game. This is only due
to the fact that he avoids many shots when shooting only in the
even cells since they both explore the area in the same way.

The graph above shows the cumulative probability graph. We can
better see the improvement of both reactive agent strategies over
the pure random strategy. The Parity agent needs approximately
only 61 shots to complete 50% of the games and 5% of the games
will take less than 43 shots. The agent without the parity filter,
needs 64 shots to complete 50% of the games as the Parity agent,
also needs less than 43 shots to complete 5% of the games.
To finish the evaluation regarding this metric, we still need to
analyze the Q-learning agent.

The learning agent is acting in a very similar way compared to the
Naive, which makes decisions randomly. We thought that
Learning could perform better as Reactive types do. We know the
Learning has to use random for the first steps, but after that, it
could make better decisions according to his experience.

Since in all the simulations of the previous analysis a new game
was created, that means that the fleet location was always
changing. Because of that, we decided to also experiment to run
simulations to the where the fleet was fixed.

First we ran with the disposition presented on the image below.
We tried to place the ships in a scattered way, to cover all the
board.



As we can see, the results were similar to the ones we already
analyzed and that’s good because it means that our simulations
cover multiple fleet locations.

However, we decided to try a second disposition where we have
the ships close to each other in a way that adjacent coordinates
have different ships.

We can observe in the graphic above that the curves of Random
and Learning agents didn’t change but the ones from the Reactive
Agents both changed. The Reactive Random agent can complete
the game with 37 shots only and almost never needs more than 60.
The same goes for the Reactive Parity agent. This is due the
exploration mode implementation. Both these agents work better
and have advantage when the ships are adjacent to each other and
we can conclude by looking at the previous graphs.

Regarding the second metric, number of max consecutive hits per
game.

The above shows the number of max consecutive hits per game
for each player. Once again, we have the Random agent and the
Q-learning Agent with practically the same results. The majority
of the games, these agents can only hit two consecutive hits and
they get to hit up to 5 consecutive shots. The Reactive agents are
pretty similar too, but we can observe that they hit more
consecutive shots when compared with the Random and
Q-learning agent. They get to hit up to 8 consecutive shots which
is a very good improvement.

We can also observe that it appears that the Reactive Random
agent is slightly better in this metric. The agent has a higher
percentage of games in which he hits 3 consecutive shots, unlike
the agent with Parity who has a higher percentage of games in
which he hits 2 consecutive shots. This can be justified by the fact
that an agent without parity has more cells to shoot and therefore
increases the probability of hitting more shots in a row when
firing randomly (when not in exploration mode).

Also, regarding both reactive agents, these values could be higher
if this same idea of exploring were implemented differently. Every
time a shot hits, the agent adds the neighbor cells to a list and
explores. The agent explores according to the order of the
coordinates in the list since he always picks the first item in the
list.



In the previous image, the agent hit the cell (1,1). We will append
the cells (1,0), (0,1), (1,2), (2,1) to the list. On the next iteration,
he would pick (1,0) and fail. Next, (0,1) and fail. When he
chooses (1,2), it’s a hit and the list will have the cells (2,1), (0,2),
(1,3) and (0,2). And that’s where the improvement should be.
Since he already explored to the left and found nothing, when he
hits (1,2) he should remain exploring in that direction and only
when he fails, he should change the direction. So, basically, every
time he is exploring and hits, he should remain in that direction.
This idea would improve the results regarding this metric.

Regarding the last metric, percentage of games won by each agent
against other agents, we ran 500 simulations for each duel and we
obtained the following results:

● Random x Reactive Random: Reactive Random won
98.6% of the games.

● Random x Reactive Parity: Reactive Parity won 100%
of the games.

● Random x Learning: Learning won 60% of the games.
● Reactive Random x Reactive Parity: Reactive parity

won 57.4% of the games.
● Reactive Random x Learning: Reactive Random won

100% of the games.
● Reactive Parity vs Learning: Reactive Parity won

100% of the games.

This metric was used only to confirm what we had already
analyzed in the previous metrics. Both reactive agents are
significantly better than the random agent and the learning agent.
Perhaps 500 iterations are few to draw any tiebreaker conclusions,
but Reactive Parity seemed to do better than Reactive Random
and the Learning agent seemed to do better than Random agent.

4.2 Conclusion

Our final conclusion the following:
We envisioned a group of different AIs that were capable of
resolving the game.
During our development we tried to figure out strategies that
could outperform a human player. We think we achieve good
results regarding the Reactive Agents but not so good regarding
the Learning agent. We expected better results regarding the
Q-Learning, despite the fact that not always learning algorithms
can outperform random ones. Maybe we could have tried to
implement a different logic, regarding the actions and the states.
We would like to try to use probability density functions in order
to build an algorithm that calculates the most probable location to
fire next based on all possible locations the enemy ships could be
in. It would work as a heatmap. Initially all the cells would have
some probability but as more shots are fired, the probability
values of each cell would change, some locations become highly
likely, some become less likely and others become impossible.
Overall we are fairly happy with our work, since it was our first
touch with AI, and we were able to watch agents resolving the
game and battling against each other.


